In 1865, Professor Hughes also went to Berlin, and introduced his apparatus on the Prussian lines. In 1867, he went on a similar mission to Austria, where he received the Order of the Iron Crown; and to Turkey, where the reigning Sultan bestowed on him the Grand Cross of the Medjidie. In this year, too he was awarded at the Paris Exhibition, a grand HORS LIGNE gold medal, one out of ten supreme honours designed to mark the very highest achievements. On the same occasion another of these special medals was bestowed on Cyrus Field and the Anglo-American Telegraph Company. In 1868, he introduced it into Holland; and in 1869, into Bavaria and Wurtemburg, where he obtained the Noble Order of St. Michael. In 1870, he also installed it in Switzerland and Belgium.
Coming back to England, the Submarine Telegraph Company adopted the type-printer in 1872, when they had only two instruments at work. In 1878 they had twenty of them in constant use, of which number nine were working direct between London and Paris, one between London and Berlin, one between London and Cologne, one between London and Antwerp, and one between London and Brussels. All the continental news for the TIMES and the DAILY TELEGRAPH is received by the Hughes' type-printer, and is set in type by a type-setting machine as it arrives. Further, by the International Telegraph Congress it was settled that for all international telegrams only the Hughes' instrument and the Morse were to be employed. Since the Post Office acquired the cables to the Continent in 1889, a room in St. Martin's-le-Grand has been provided for the printers working to Paris, Berlin, and Rome.
In 1875, Professor Hughes introduced the type-printer into Spain, where he was made a Commander of the Royal and Distinguished Order of Carlos III. In every country to which it was taken, the merits of the instrument were recognised, and Professor Hughes has none but pleasant souvenirs of his visits abroad.
During all these years the inventor was not idle. He was constantly improving his invention; and in addition to that, he had to act as an instructor where-ever he went, and give courses of lectures explaining the principles and practice of his apparatus to the various employees into whose hands it was to be consigned.
The years 1876-8 will be distinguished in the history of our time for a triad of great inventions which, so to speak, were hanging together. We have already seen how the telephone and phonograph have originated; and to these two marvellous contrivances we have now to add a third, the microphone, which is even more marvellous, because, although in form it is the simplest of them all, in its action it is still a mystery. The telephone enables us to speak to distances far beyond the reach of eye or ear, 'to waft a sigh from Indus to the Pole; 'the phonograph enables us to seal the living speech on brazen tablets, and store it up for any length of time; while it is the peculiar function of the microphone to let us hear those minute sounds which are below the range of our unassisted powers of hearing. By these three instruments we have thus received a remarkable extension of the capacity of the human ear, and a growth of dominion over the sounds of Nature. We have now a command over sound such as we have over light. For the telephone is to the ear what the telescope is to the eye, the phonograph is for sound what the photograph is for light, and the microphone finds its analogue in the microscope. As the microscope reveals to our wondering sight the rich meshes of creation, so the microphone can interpret to our ears the jarr of molecular vibrations for ever going on around us, perchance the clash of atoms as they shape themselves into crystals, the murmurous ripple of the sap in trees, which Humboldt fancied to make a continuous music in the ears of the tiniest insects, the fall of pollen dust on flowers and grasses, the stealthy creeping of a spider upon his silken web, and even the piping of a pair of love-sick butterflies, or the trumpeting of a bellicose gnat, like the 'horns of elf-land faintly blowing.'
The success of the Hughes type-printer may be said to have covered its author with titles and scientific honours, and placed him above the necessity of regular employment. He left America, and travelled from place to place. For many years past, however, he has resided privately in London, an eminent example of that modesty and simplicity which is generally said to accompany true genius.
Mechanical invention is influenced to a very high degree by external circumstances. It may sound sensational, but it is nevertheless true, that we owe the microphone to an attack of bronchitis. During the thick foggy weather of November 1877, Professor Hughes was confined to his home by a severe cold, and in order to divert his thoughts he began to amuse himself with a speaking telephone. Then it occurred to him that there might be some means found of making the wire of the telephone circuit speak of itself without the need of telephones at all, or at least without the need of one telephone, namely, that used in transmitting the sounds. The distinguished physicist Sir William Thomson, had lately discovered the peculiar fact that when a current of electricity is passed through a wire, the current augments when the wire is extended, and diminishes when the wire is compressed, because in the former case the resistance of the material of the wire to the passage of the current is lessened, and in the latter case it becomes greater.
Now it occurred to Professor Hughes that, if this were so, it might be possible to cause the air-vibrations of sound to so act upon a wire conveying a current as to stretch and contract it in sympathy with themselves, so that the sound-waves would create corresponding electric waves in the current, and these electric waves, passed through a telephone connected to the wire, would cause the telephone to give forth the original sounds. He first set about trying the effect of vibrating a wire in which a current flowed, to see if the stretching and compressing thereby produced would affect the current so as to cause sounds in a telephone connected up in circuit with the wire--but without effect. He could hear no sound whatever in the telephone. Then he stretched the wire till it broke altogether, and as the metal began to rupture he heard a distinct grating in the telephone, followed by a sharp 'click,' when the wire sundered, which indicated a 'rush' of electricity through the telephone. This pointed out to him that the wire might be sensitive to sound when in a state of fracture. Acting on the hint, he placed the two broken ends of the wire together again, and kept them so by the application of a definite pressure. To his joy he found that he had discovered what he had been in search of. The imperfect contact between the broken ends of the wire proved itself to be a means of transmitting sounds, and in addition it was found to possess a faculty which he had not anticipated--it proved to be sensitive to very minute sounds, and was in fact a rude microphone. Continuing his researches, he soon found that he had discovered a prin- ciple of wide application, and that it was not necessary to confine his experiments to wires, since any substance which conducted an electric current would answer the purpose. All that was necessary was that the materials employed should be in contact with each other under a slight but definite pressure, and, for the continuance of the effects, that the materials should not oxidise in air so as to foul the contact. For different materials a different degree of pressure gives the best results, and for different sounds to be transmitted a different degree of pressure is required. Any loose, crazy unstable structure, of conducting bodies, inserted in a telephone circuit, will act as a microphone. Such, for example, as a glass tube filled with lead-shot or black oxide of iron, or 'white bronze' powder under pressure; a metal watch-chain piled in a heap. Surfaces of platinum, gold, or even iron, pressed lightly together give excellent results. Three French nails, two parallel beneath and one laid across them, or better still a log- hut of French nails, make a perfect transmitter of audible sounds, and a good microphone. Because of its cheapness, its conducting power, and its non-oxidisability, carbon is the most select material. A piece of charcoal no bigger than a pin's head is quite sufficient to produce articulate speech. Gas-carbon operates admirably, but the best carbon is that known as willow-charcoal, used by artists in sketching, and when this is impregnated with minute globules of mercury by heating it white- hot and quenching it in liquid mercury, it is in a highly sensitive microphonic condition. The same kind of charcoal permeated by platinum, tin, zinc, or other unoxidisable metal is also very suitable; and it is a significant fact that the most resonant woods, such as pine, poplar, and willow, yield the charcoals best adapted for the microphone. Professor Hughes' experimental apparatus is of an amusingly simple description. He has no laboratory at home, and all his experiments were made in the drawing-room. His first microphones were formed of bits of carbon and scraps of metal, mounted on slips of match-boxes by means of sealing-wax; and the resonance pipes on which they were placed to reinforce the effect of minute sounds, were nothing more than children's toy money boxes, price one halfpenny, having one of the ends knocked out. With such childish and worthless materials he has conquered Nature in her strongholds, and shown how great discoveries can be made. The microphone is a striking illustration of the truth that in science any phenomenon whatever may be rendered useful. The trouble of one generation of scientists may be turned to the honour and service of the next. Electricians have long had sore reasons for regarding a 'bad contact' as an unmitigated nuisance, the instrument of the evil one, with no conceivable good in it, and no conceivable purpose except to annoy and tempt them into wickedness and an expression of hearty but ignominious emotion. Professor Hughes, however, has with a wizard's power transformed this electrician's bane into a professional glory and a public boon. Verily there is a soul of virtue in things evil.
2023-12-02 16:39
2023-12-02 15:34
2023-12-02 14:57
2023-12-02 14:49
2023-12-02 14:12
copyright © 2016 powered by dog continued mink tail net sitemap